

SEMTRANS® 3

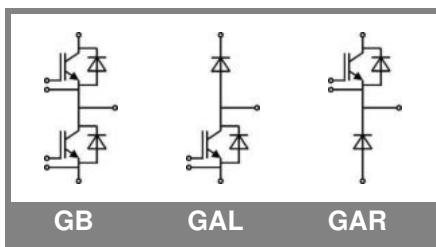
Ultra Fast IGBT Modules

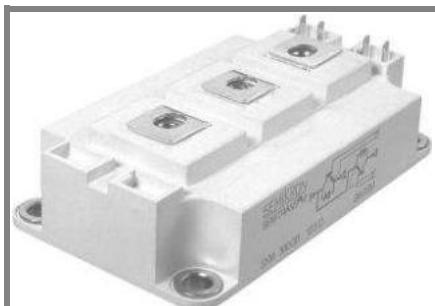
SKM 200GB125D

SKM 200GAL125D

SKM 200GAR125D

Features


- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{Cnom}$
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*

- Switched mode power supplies at $f_{sw} > 20$ kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at $f_{sw} > 20$ kHz

Absolute Maximum Ratings		$T_c = 25$ °C, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25$ °C	1200		V
I_C	$T_j = 150$ °C $T_{case} = 25$ °C $T_{case} = 80$ °C	200 160		A A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	300		A
V_{GES}		± 20		V
t_{psc}	$V_{CC} = 600$ V; $V_{GE} \leq 20$ V; $T_j = 125$ °C $V_{CES} < 1200$ V	10		μs
Inverse Diode				
I_F	$T_j = 150$ °C $T_{case} = 25$ °C $T_{case} = 80$ °C	200 130		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	300		A
I_{FSM}	$t_p = 10$ ms; sin. $T_j = 150$ °C	1440		A
Freewheeling Diode				
I_F	$T_j = 0$ °C $T_c = 25$ °C $T_c = 80$ °C	200 130		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	300		A
I_{FSM}	$t_p = 10$ ms; $T_j = 150$ °C	1440		A
Module				
$I_{t(RMS)}$		500		A
T_{vj}		- 40...+ 150		°C
T_{stg}		- 40...+ 125		°C
V_{isol}	AC, 1 min.	4000		V

Characteristics		$T_c = 25$ °C, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6$ mA	4,5	5,5	6,5
I_{CES}	$V_{GE} = 0$ V, $V_{CE} = V_{CES}$ $T_j = 25$ °C	0,15	0,45	mA
V_{CEO}	$T_j = 25$ °C $T_j = 125$ °C	1,5	1,75	V
r_{CE}	$V_{GE} = 15$ V $T_j = 25$ °C $T_j = 125$ °C	12	14	mΩ
$V_{CE(sat)}$	$I_{Cnom} = 150$ A, $V_{GE} = 15$ V $T_j = \text{°C}_{chiplev.}$	3,3	3,85	V
C_{ies}		10	13	nF
C_{oes}	$V_{CE} = 25$, $V_{GE} = 0$ V $f = 1$ MHz	1,5	2	nF
C_{res}		0,8	1,2	nF
Q_G	$V_{GE} = 0$ V - +20V	1300		nC
R_{Gint}	$T_j = 0$ °C	2,5		Ω
$t_{d(on)}$	$R_{Gon} = 4$ Ω	75		ns
t_r		36		ns
E_{on}		14		mJ
$t_{d(off)}$	$R_{Goff} = 4$ Ω	420		ns
t_f		25		ns
E_{off}				mJ
$R_{th(j-c)}$	per IGBT	0,09		K/W

SEMITRANS® 3

Ultra Fast IGBT Modules

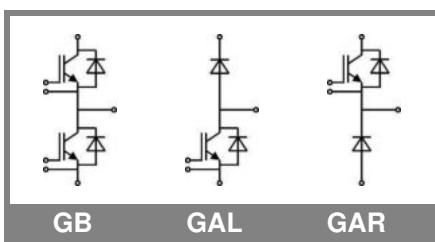
SKM 200GB125D

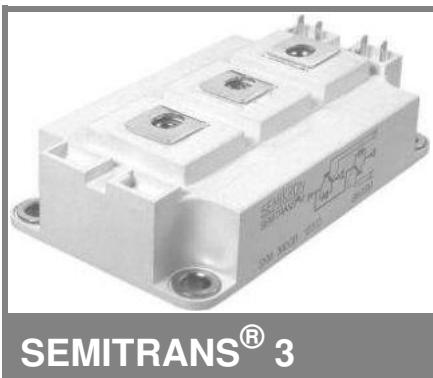
SKM 200GAL125D

SKM 200GAR125D

Features

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{cnom}$
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)


Typical Applications*


- Switched mode power supplies at $f_{sw} > 20$ kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at $f_{sw} > 20$ kHz

Symbol	Conditions	min.	typ.	max.	Units
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 150$ A; $V_{GE} = 0$ V $T_j = 25$ °C _{chiplev.} $T_j = 125$ °C _{chiplev.}	2	2,5		V
V_{FO}	$T_j = 25$ °C $T_j = 125$ °C	1,1	1,2		V
r_F	$T_j = 25$ °C $T_j = 125$ °C	6	8,7		mΩ
I_{RRM} Q_{rr} E_{rr}	$I_F = 150$ A $di/dt = 5500$ A/μs $V_{GE} = 0$ V; $V_{CC} = 600$ V	230	24		A μC mJ
$R_{th(j-c)D}$	per diode			0,25	K/W
Freewheeling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 150$ A; $V_{GE} = 0$ V $T_j = 25$ °C _{chiplev.} $T_j = 125$ °C _{chiplev.}	2	2,5		V
V_{FO}	$T_j = 25$ °C $T_j = 125$ °C	1,1	1,2		V
r_F	$T_j = 25$ °C $T_j = 125$ °C	6	8,7		V
I_{RRM} Q_{rr} E_{rr}	$I_F = 150$ A $di/dt = 5500$ A/μs $V_{GE} = 0$ V; $V_{CC} = 600$ V	230	24		A μC mJ
$R_{th(j-c)FD}$	per diode			0,25	K/W
Module					
L_{CE}		15	20		nH
$R_{CC'EE'}$	res., terminal-chip $T_{case} = 25$ °C $T_{case} = 125$ °C	0,35			mΩ
$R_{th(c-s)}$	per module		0,038		K/W
M_s	to heat sink M6	3	5		Nm
M_t	to terminals M6	2,5	5		Nm
w				325	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

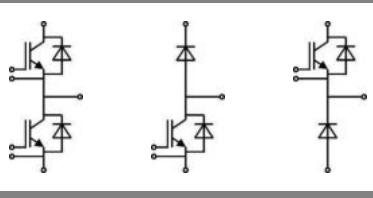
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

Ultra Fast IGBT Modules

SKM 200GB125D

SKM 200GAL125D

SKM 200GAR125D


Z_{th} Symbol	Conditions	Values	Units
$Z_{th(j-c)I}$			
R_i	i = 1	60	mk/W
R_i	i = 2	23	mk/W
R_i	i = 3	5,9	mk/W
R_i	i = 4	1,1	mk/W
τ_i	i = 1	0,0744	s
τ_i	i = 2	0,0087	s
τ_i	i = 3	0,002	s
τ_i	i = 4	0,0015	s
$Z_{th(j-c)D}$			
R_i	i = 1	160	mk/W
R_i	i = 2	67	mk/W
R_i	i = 3	20	mk/W
R_i	i = 4	3	mk/W
τ_i	i = 1	0,0536	s
τ_i	i = 2	0,0034	s
τ_i	i = 3	0,077	s
τ_i	i = 4	0,0003	s

Features

- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to $6 \times I_{cnom}$
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

Typical Applications*

- Switched mode power supplies at $f_{sw} > 20$ kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at $f_{sw} > 20$ kHz

SKM 200GB125D

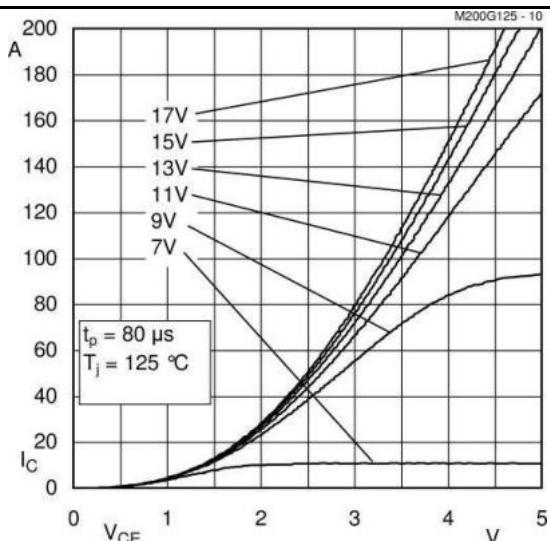


Fig. 1 Typ. output characteristic, inclusive R_{CC+EE}

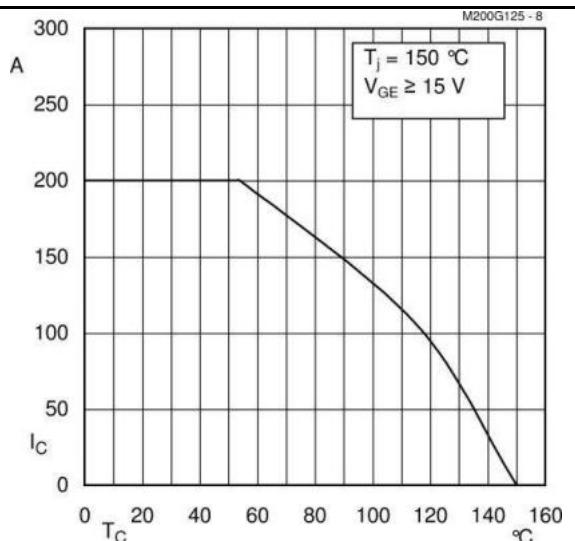


Fig. 2 Rated current vs. temperature $I_C = f(T_C)$

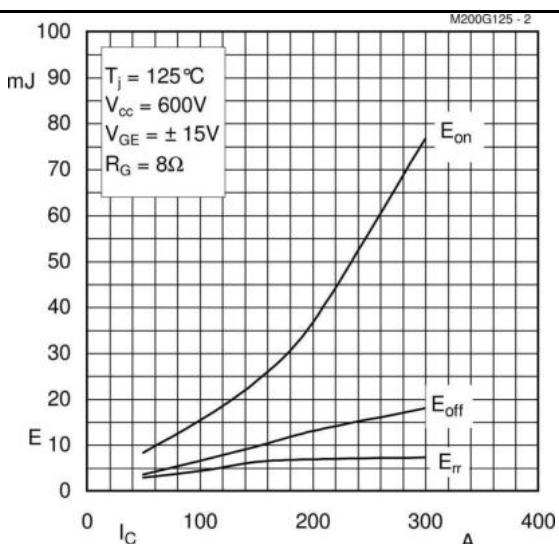


Fig. 3 Typ. turn-on /-off energy = $f(I_C)$

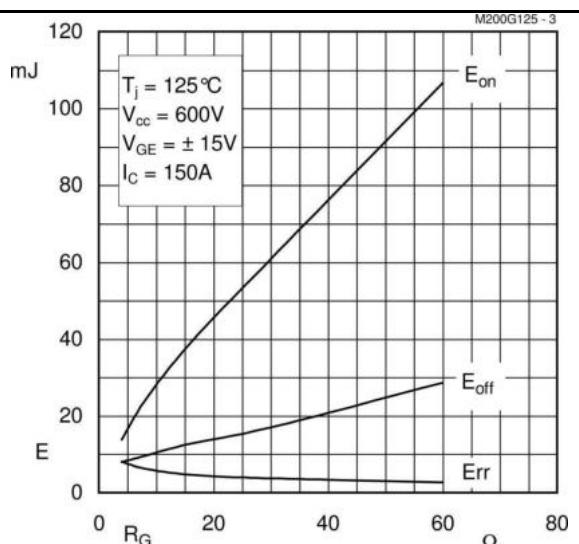


Fig. 4 Typ. turn-on /-off energy = $f(R_G)$

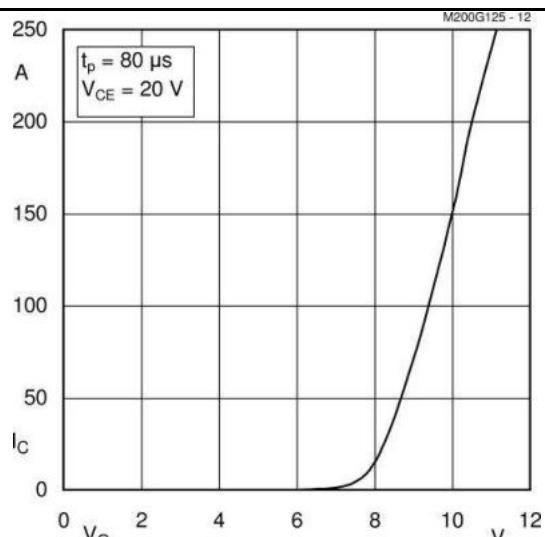


Fig. 5 Typ. transfer characteristic

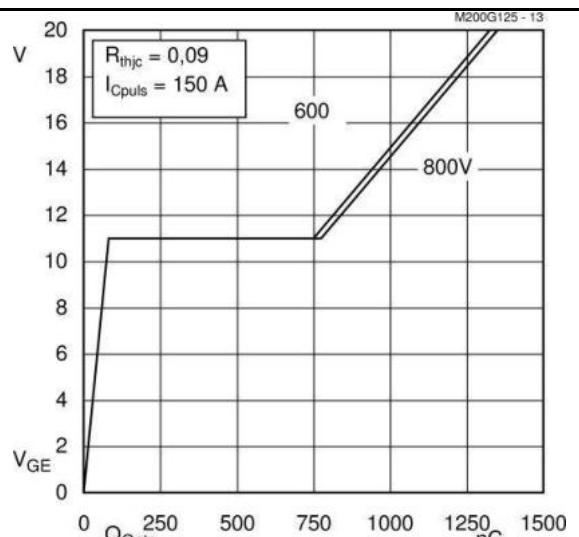


Fig. 6 Typ. gate charge characteristic

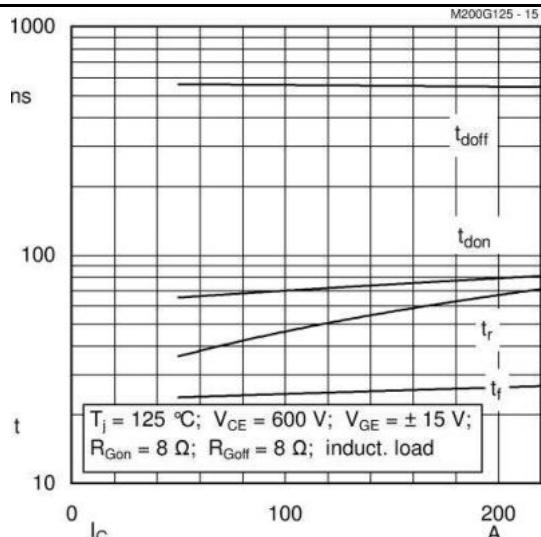


Fig. 7 Typ. switching times vs. I_C

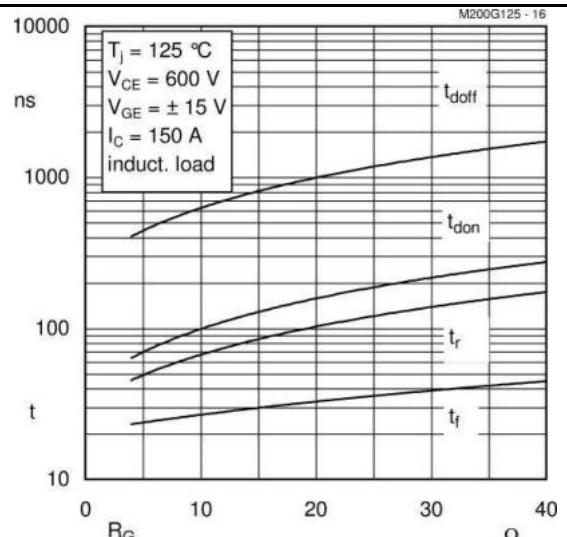


Fig. 8 Typ. switching times vs. gate resistor R_G

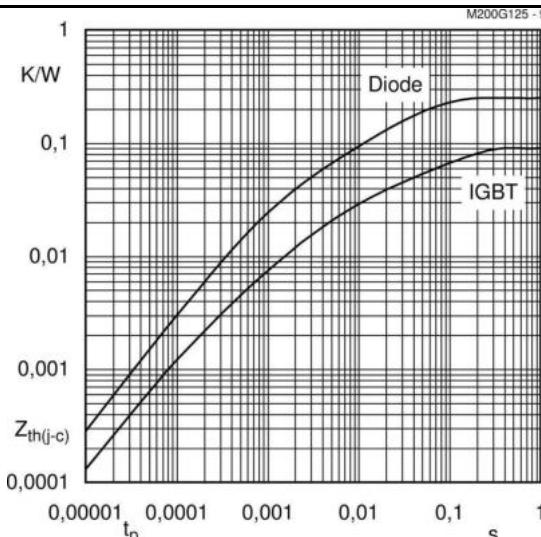


Fig. 9 Transient thermal impedance

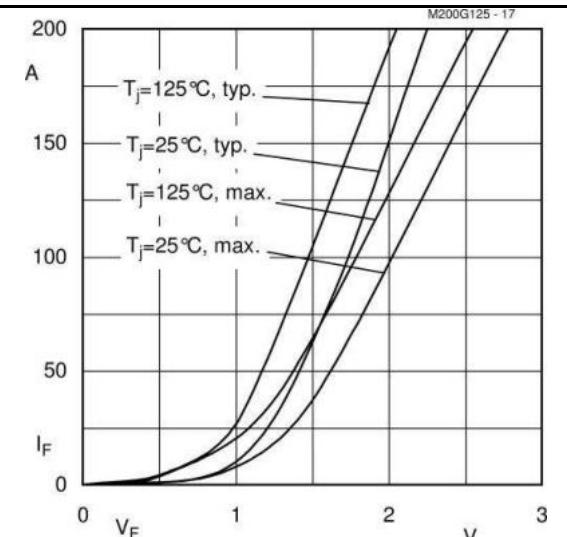


Fig. 10 CAL diode forward characteristic

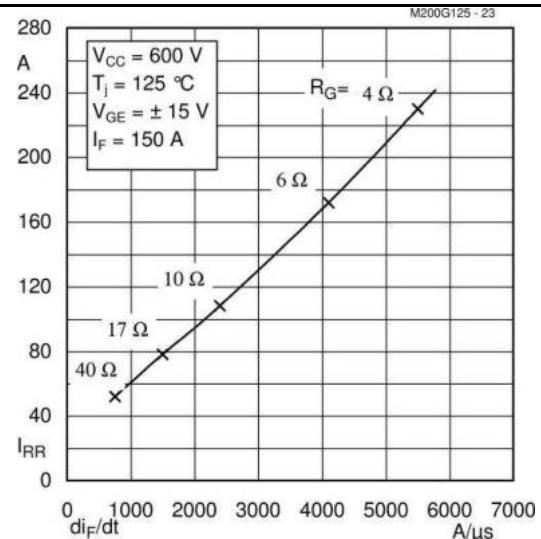
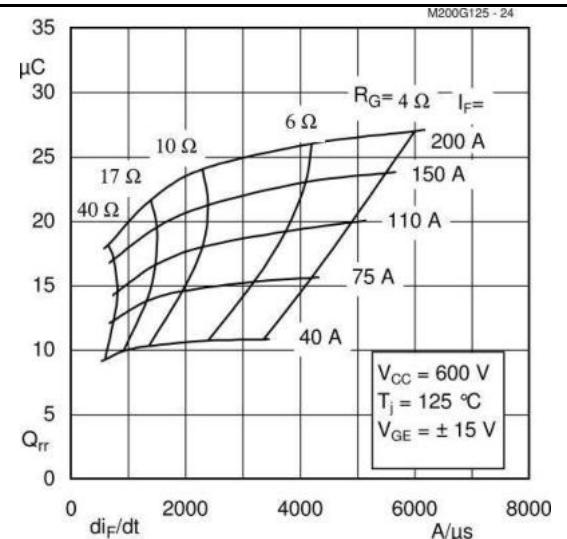
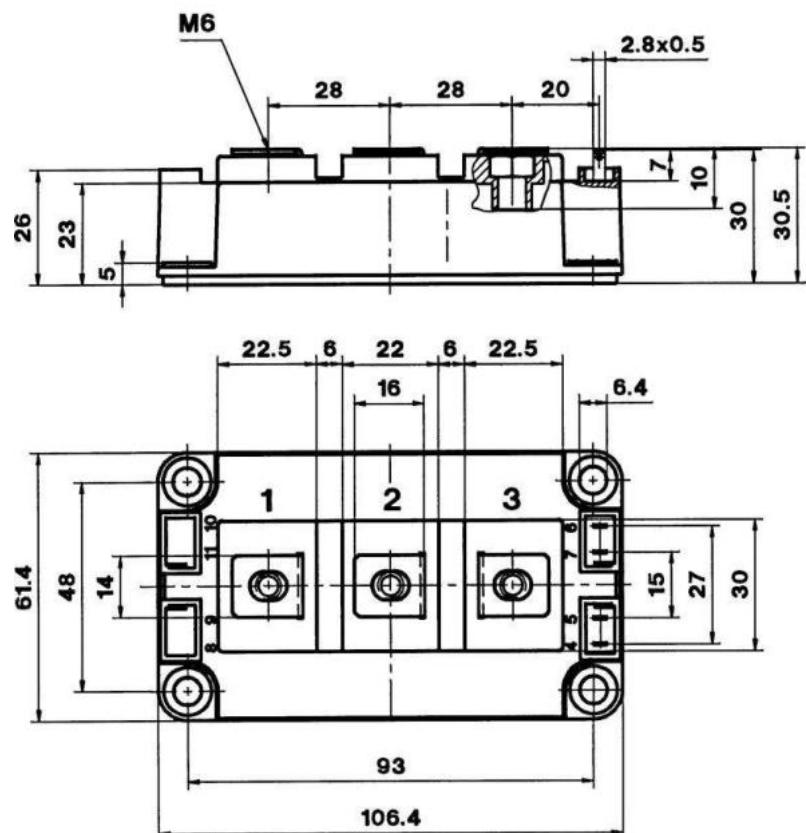
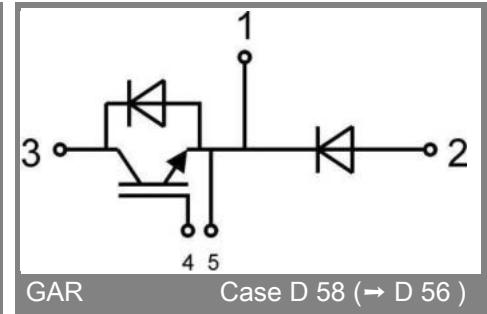
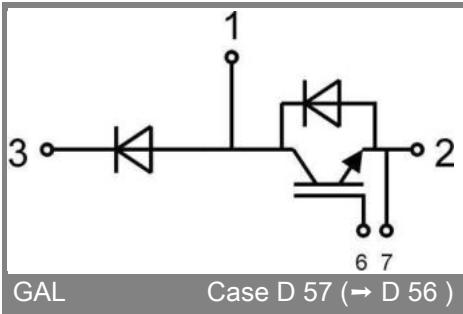
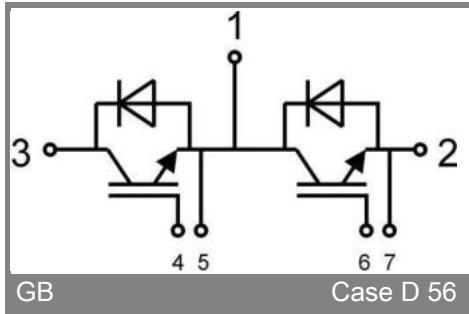


Fig. 11 Typ. CAL diode peak reverse recovery current




Fig. 12 Typ. CAL diode peak reverse recovery charge

SKM 200GB125D




UL Recognized

File 63 532

CASED56

Case D 56

